A Mean Characterization of Weighted Anisotropic Besov and Triebel-Lizorkin Spaces

نویسندگان

  • Baode Li
  • Marcin Bownik
  • Dachun Yang
  • Wen Yuan
چکیده

In this article, the authors study weighted anisotropic Besov and TriebelLizorkin spaces associated with expansive dilations and A∞ weights. The authors show that elements of these spaces are locally integrable when the smoothness parameter α is positive. The authors also characterize these spaces for small values of α in terms of a mean square function recently introduced in the context of Sobolev spaces in [Math. Ann. 354 (2012), 589-626] and isotropic Triebel-Lizorkin spaces in [Publ. Mat. 57 (2013), 57-82].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decomposition of Weighted Triebel-lizorkin and Besov Spaces on the Ball

Weighted Triebel-Lizorkin and Besov spaces on the unit ball Bd in Rd with weights wμ(x) = (1 − |x|2)μ−1/2, μ ≥ 0, are introduced and explored. A decomposition scheme is developed in terms of almost exponentially localized polynomial elements (needlets) {φξ}, {ψξ} and it is shown that the membership of a distribution to the weighted Triebel-Lizorkin or Besov spaces can be determined by the size ...

متن کامل

Wavelet bases in the weighted Besov and Triebel-Lizorkin spaces with Aploc-weights

We obtain wavelet characterizations of Besov spaces and the Triebel–Lizorkin spaces associated with Aloc ∞ -weights. These characterizations are used to show that our wavelet bases are also greedy. c © 2009 Elsevier Inc. All rights reserved.

متن کامل

Jacobi Decomposition of Weighted Triebel-lizorkin and Besov Spaces

The Littlewood–Paley theory is extended to weighted spaces of distributions on [−1, 1] with Jacobi weights w(t) = (1−t)(1+t) . Almost exponentially localized polynomial elements (needlets) {φξ}, {ψξ} are constructed and, in complete analogy with the classical case on R, it is shown that weighted Triebel–Lizorkin and Besov spaces can be characterized by the size of the needlet coefficients {〈f, ...

متن کامل

Heat Kernel Based Decomposition of Spaces of Distributions in the Framework of Dirichlet Spaces

Classical and nonclassical Besov and Triebel-Lizorkin spaces with complete range of indices are developed in the general setting of Dirichlet space with a doubling measure and local scale-invariant Poincaré inequality. This leads to Heat kernel with small time Gaussian bounds and Hölder continuity, which play a central role in this article. Frames with band limited elements of sub-exponential s...

متن کامل

Traces of Anisotropic Besov-lizorkin-triebel Spaces—a Complete Treatment of the Borderline Cases

Including the previously untreated borderline cases, the trace spaces (in the distributional sense) of the Besov-Lizorkin-Triebel spaces are determined for the anisotropic (or quasi-homogeneous) version of these classes. The ranges of the traces are in all cases shown to be approximation spaces, and these are shown to be different from the usual spaces precisely in the cases previously untreate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014